portafolioleyconservacionenergia
  1.1.4 Teorema del trabajo y la energia
 

1.1.4 Teorema del trabajo y la energia


Desde que estudiaste las leyes de Newton conoces muy bien que si sobre un cuerpo inicialmente en reposo actua una fuerza net, su velocidad varia. Ahora podemos agregar que la fuerza neta realiza trabajo, provocando una variacion de la energia cinetica, o energia de movimiento del cuerpo. Entre el trabajo y la energia cinetica existe una estrech relacion.


Se denomina trabajo, al producto escalar del vector fuerza por el vector desplazamiento.

Donde Ft es la componente de la fuerza a lo largo del desplazamiento, ds es el módulo del vector desplazamiento dr, y q el ángulo que forma el vector fuerza con el vector desplazamiento.

El trabajo total a lo largo de la trayectoria entre los puntos A y B es la suma de todos los trabajos infinitesimales

Su significado geométrico es el área bajo la representación gráfica de la función que relaciona la componente tangencial de la fuerza Ft, y el desplazamiento s.

Ejemplo: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m.

La fuerza necesaria para deformar un muelle es F=1000·x N, donde x es la deformación. El trabajo de esta fuerza se calcula mediante la integral

El área del triángulo de la figura es (0.05·50)/2=1.25 J

Cuando la fuerza es constante, el trabajo se obtiene multiplicando la componente de la fuerza a lo largo del desplazamiento por el desplazamiento.

W=Ft·s

Ejemplo:

Calcular el trabajo de una fuerza constante de 12 N, cuyo punto de aplicación se traslada 7 m, si el ángulo entre las direcciones de la fuerza y del desplazamiento son 0º, 60º, 90º, 135º, 180º.
 

Si la fuerza y el desplazamiento tienen el mismo sentido, el trabajo es positivo Si la fuerza y el desplazamiento tienen sentidos contrarios, el trabajo es negativo Si la fuerza es perpendicular al desplazamiento, el trabajo es nulo.